A Decision Procedure for Program Analysis and Bug Finding

Vijay Ganesh
Affiliation: CSAIL, MIT
Supported by Lincoln Labs
February 7th, 2008
Motivating Example

```c
Foo(int x){
    int A[2];
    int t;
    A[0] = 0;
    A[1] = 1;
    if(0 <= x <= 1) {
        t = 2/(A[x] + x);
    }
}
```

In Theory, Symbolic Execution + DP + Verification Conditions - Unbounded Loops, Gives Verification
Decision Procedures

- Examples: Boolean SAT, Real Arithmetic, Bit-vectors
- Reduction easy for many problems
- Approach better than coming up with special purpose algorithms:
 - More efficient and saves work
- AI, program analysis, bug finding, verification,…
1. **Design and Architecture of STP** (CAV ‘07, CCS ‘06)

2. **Abstraction-Refinement** based heuristics for Deciding Arrays

3. **Solver Algorithm** for deciding Linear Bit-vector Arithmetic $O(n^3)$

4. **Experimental Results**
Projects using STP

- **Bug Finders**
 - EXE by Dawson Engler, Cristian Cadar and others (Stanford)
 - MINESWEEPER by Dawn Song and her group (CMU)
 - CATCHCONV by David Molnar and David Wagner (Berkeley)
 - Backward Path Sensitive Analysis by Tim Leek (MIT Lincoln)

- **Security Tools**
 - REPLAYER: Security analysis thru protocol replay (CMU)
 - Smart Fuzzer by Roberto Paleari (University of Milan, Italy)

- **Program Analysis**
 - by Rupak Majumdar (UCLA)

- **Hardware verification**
 - Cache coherence protocols by Dill group (Stanford)
 - By a chip company

- **Software verification of crypto algorithms by Dill group (Stanford)**
Projects using STP: Smart Fuzzing thru’ Path Selection

- **Smart Fuzzer by Roberto Paleari (University of Milan, Italy)**
 - Do dynamic analysis to determine dependency between input and control transfer (if conditional)
 - Collect path conditions
 - Feed to STP to find values that drive a path
 - Feed to STP to find values that drive the ‘other’ path
Projects using STP: Formal Verification of Crypto Algorithms

- Eric Smith and David Dill

Technique

- Annotate code with Invariants
- Symbolically execute the Java implementation of the Crypto Algo
- Plug the symbolically executed terms into the invariants
- Feed invariants into ACL2 + STP
- ACL2 handles any induction + integer related stuff, and STP handles (in)equalities over bit-vector terms
Projects using STP:
Cross Checking, Model Checking, Equivalence Checking(?)

- Cross Checking: EXE : Dawson Engler, Cristian Cadar, ...
 - Different implementations of grep... Do they match?
 - Symbolic-simulate Grep1
 - Symbolic-simulate Grep2
 - Equate the two and feed to STP

- Model Checking Cache Coherence Protocols: Chang and Dill
 - Does model satisfy property P?
 - Convert to decision problem and feed to STP
 - If you are using BDDs, try SAT or STP

```
Compiler Optimization/
Verilog Synthesis
```

```f() = g()
```

```
STP
Valid/Invalid
```
Projects using STP:
Work by Dawn Song and her group

- Automatic discovery of deviations in binary implementations: error detection and fingerprint generation

- Protocol Replay: Try to reproduce a dialog between an initiator and a network host
 - Auto Generation of modules for honeypots so that they can correctly respond to connection attempts by worms

- Automatic patch based exploit generation: Using STP to reveal exploit information from a windows patch
Quantifier-free Theory of Bit-vectors and Arrays

\[(x + \text{mem}[i] + 0b10 = 0) \text{ OR } (\text{q}[3:1]*0b01 < 0b00)\]

- Expressions in STP correspond to
 - C/Java... programming language expressions
 - Microprocessor instruction set
 - Arrays represent program memory or array data structure in C/Java...

- Except
 - Our bit-vectors are of any fixed length
 - No floating point
 - No loops

- SAT problem for this theory is NP-complete
Quantifier-free Theory of Bit-vectors and Arrays

\[(x + \text{mem}[i] + 0b10 = 0) \text{ OR } (q[3:1]*0b01 < 0b00)\]

- **Bit-vector Terms**
 - Constants: 0b0011
 - Variables
 - +, -, *, (signed) div, (signed) mod
 - Concatenation, Extraction
 - Left/Right Shift, Sign-extend, bitwise-Booleans
Quantifier-free Theory of Bit-vectors and Arrays

\[(x + \text{mem}[i] + 0b10 = 0) \text{ OR } (q[3:1]*0b01 < 0b00)\]

- **Array Terms**
 - Read (Array, index)
 - Write (Array, index, val)
 - Example: \(R(W(A, i, 0b00), i) = 0b00\)

- **Conditional in programming/multiplexors in hardware**
 - \(\text{ite}(c, t1, t2) = \text{if } (c) \text{ then } t1 \text{ else } t2 \text{ endif}\)

- **Predicates:** =, <=, <=s
Features of STP

- Can handle very large formulas efficiently
 - Large number of array reads (10^5)
 - Deeply nested array writes (10^4 deep)
 - Very large number of linear equations (10^6)
 - Very large number of variables (10^6)

- Enabled several software and hardware applications

- Won the SMTCOMP 2006 competition in bit-vector category
STP Architecture

Input Formula

Substitutions

Simplifications

Linear Solving

Array Abstraction

BitBlast

CNF Conversion

Boolean SAT

Refinement Loop

Result
Alternative Architectures

Input Formula

SAT

Simplifier

Result

New Derived Constraints

DP_1 DP_2 \ldots DP_n

Combination:
- NO79, Sho84, RS02
- CVC3 (BB04)
- CVC (SBD02)
- z3 (DeMB07)
- Yices (DeMB05)

Others:
- STP (GD06, GD07)
- UCLID (BS05)
- BAT (M06)
- Cogent (BK05)
Alternative Architectures

Input Formula

SAT

Simplifier

Result

DP₁
DP₂
…
DPₙ

New Derived Constraints

Refinement Loop

Input Formula

Substitutions

Simplifications

Linear Solving

Array Abstraction

BitBlast

CNF Conversion

Boolean SAT
1. Design and Architecture of STP

2. Abstraction-Refinement based heuristics for Deciding Arrays

3. Solver Algorithm for deciding Linear Bit-vector Arithmetic $O(n^3)$

4. Experimental Results
Standard Handling of Array reads

- Problem: $O(n^2)$ axioms added, n is number of read indices
 - Lethal, if n is large: $n = 10000$, # of axioms: ~ 100 million
 - Blowup seems hard to avoid (e.g. UCLID)
- This is “aliasing” from another perspective
- Key Observation: Most indices don’t alias

Replace array reads with fresh variables and axioms

\[
\begin{align*}
 v_0 &= t_0 \\
 v_1 &= t_1 \\
 & \quad \vdots \\
 v_n &= t_n \\
 (i_1 = i_0) & \Rightarrow v_1 = v_0 \\
 (i_2 = i_0) & \Rightarrow v_2 = v_0 \\
 (i_2 = i_1) & \Rightarrow v_2 = v_1 \\
 & \quad \vdots
\end{align*}
\]
Abstraction-Refinement for Array Reads

Input → Array Transform → To SAT Solver without Axioms

Check Input on Assignment

Assignment is Correct

Add False Axioms to SAT Solver

Refinement Loop

Incorrect

SAT → UNSAT

SAT

UNSAT
Abstraction-Refinement for Array Reads

Input:
- \(\text{Read}(A, i) = 0 \)
- \(\text{Read}(A, k) = 1 \)
- \(i = k \)

Abstraction:
- \(v_i = 0 \)
- \(v_k = 1 \)
- \(i = k \)

SAT Solver:
- \(i = 0, k = 0 \)
- \(v_i = 0 \)
- \(v_k = 1 \)

SAT Assignment:
- UNSAT

Refinement Step:
Add Axiom
\((i = k) \Rightarrow v_i = v_k \)

Check Input on Assignment:
- \(\text{Read}(A, 0) = 0 \)
- \(\text{Read}(A, 0) = 1 \)

False
Experience with Read Abstraction-Refinement

- Heuristic is Robust
 - In Real SAT assignment very few indices aliased
 - Few axioms need to be added during refinement
 - ~10X speed-up
 - Important for software analysis

<table>
<thead>
<tr>
<th></th>
<th>Only Read Refinement (sec)</th>
<th>No Read Refinement (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time for all tests</td>
<td>624</td>
<td>3378</td>
</tr>
<tr>
<td># of timeouts (60 sec)</td>
<td>1</td>
<td>36</td>
</tr>
</tbody>
</table>

of Tests: 8495

3.2 GHz Pentium, 512Kb Cache, 32 bit machine
Examples courtesy Dawson Engler
Standard Handling of Array Writes

![Mathematical expression]

Key Observation
- Not all read indices read from write term

Sharing of sub-expression in DAG
- Array Writes are deeply nested, shared over many reads
- Problem: Standard translation breaks sharing & blowup
 - \(O(n^*m) \) blowup, \(n = \) # of levels of writes, \(m = \) # of reads
 - \(n = 10,000, m = 1000 \) : blow-up ~ 10 million new nodes

\[R(W(W(A,i_0,v_0),i_1,v_1),j) = R(W(W(A,i_0,v_0),i_1,v_1),k) \]

\[\text{If}(i_1=j) \ v_1 \text{ elsif } (i_0=j) \ v_0 \text{ else } R(A,j) = \text{If}(i_1=k) \ v_1 \text{ elsif } (i_0=k) \ v_0 \text{ else } R(A,k) \]
The Problem with Array Writes

\[
R(W(W(A,i_0,v_0),i_1,v_1),j) = R(W(W(A,i_0,v_0),i_1,v_1),k)
\]

\[
\text{If}(i_1=j) v_1 \text{ elsif } (i_0=j) v_0 \text{ else } R(A,j) = \text{If}(i_1=k) v_1 \text{ elsif } (i_0=k) v_0 \text{ else } R(A,k)
\]
Handling of Array Writes in STP

R(W(W(A,i_0,v_0),i_1,v_1),j) = R(W(W(A,i_0,v_0),i_1,v_1),k)

t_1 = t_2

Axioms:
\[t_1 = \text{ite}(i_1 = j, v_1, \text{ite}(i_0 = j, v_0, R(A,j))) \]
\[t_2 = \text{ite}(i_1 = k, v_1, \text{ite}(i_0 = k, v_0, R(A,k))) \]

- Avoids \(O(n^2) \) DAG blow-up
- Axioms are added only on a need basis
- Unfortunately, worst-case all axioms added
Abstraction-Refinement for Array Writes

Input → Array Transform → To SAT Solver without Axioms

Check Input on Assignment

SAT → Assignment is Correct

UNSAT → Incorrect

Add False Axioms to SAT Solver

SAT → UNSAT

UNSAT → Assignment is Correct
Abstraction-Refinement for Array Writes

Abstraction:
\[
R(W(A, i, v), j) = 0 \\
R(W(A, i, v), k) = 1 \\
i = j \neq k, v \neq 0
\]

SAT Solver:
\[
t_1 = 0 \\
t_2 = 1 \\
i = j \neq k, v \neq 0
\]

Refinement Step:
\[
t_1 = \text{ite}(i = j, v, R(A, j))
\]

Check Input on Assignment:
\[
R(W(A, 0, v), 0) = 0 \\
v = 1 \\
i = j = 0, k = 1
\]

False

UNSAT
Experimental Results

Array Writes

<table>
<thead>
<tr>
<th>Testcase (# of unique nodes)</th>
<th>Result</th>
<th>Write Abstraction (sec)</th>
<th>NO Write Abstraction (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>610dd9dc (15k)</td>
<td>Sat</td>
<td>37</td>
<td>101</td>
</tr>
<tr>
<td>Grep0084 (69K)</td>
<td>Sat</td>
<td>18</td>
<td>506</td>
</tr>
<tr>
<td>Grep0106 (69K)</td>
<td>Sat</td>
<td>227</td>
<td>TO</td>
</tr>
<tr>
<td>Grep0117 (70K)</td>
<td>Sat</td>
<td>258</td>
<td>TO</td>
</tr>
<tr>
<td>Testcase20 (1.2M)</td>
<td>Sat</td>
<td>56</td>
<td>MO</td>
</tr>
</tbody>
</table>

3.2 GHz Pentium, 512 Kb cache, 32 bit machine, MO @ 3.2 GB, TO @ 30 minutes

Examples courtesy Dawn Song (CMU) and David Molnar (Berkeley)
1. **Design and Architecture of STP**

2. **Abstraction-Refinement based heuristics for Deciding Arrays**

3. **Solver Algorithm for deciding Linear Bit-vector Arithmetic O(n^3)**

4. **Experimental Results**
Algorithm for Solving Linear Bit-vector Equations

- Previous Work
 - Mostly Variants of Gaussian Elimination
 - Unsuitable for Online Decision Procedures

- Basic Idea in STP
 - Solve for a variable and substitute it away

- Online Algorithm
 - Enables other algebraic simplifications

- If cannot isolate a whole variable,
 - Then isolate part of bit-vector variable,
 - Solve, and substitute it away
Purpose of Linear Solver

- Helps eliminate lots of redundant variables
- Makes problem much easier for SAT
- Essential for many real-word large examples
Importance of Online Linear Solver

Online Solving enables algebraic Simplifications

Input Formula
- Substitutions
- Simplifications
- Linear Solving
- Array Abstraction
- BitBlast
- CNF Conversion
- Boolean SAT

Refinement Loop

Result
Algorithm for Solving Linear Bit-vector Equations

\[
\begin{align*}
(\text{mod } 8) \\
3x + 4y + 2z &= 0 \\
2x + 2y + 2z &= 0 \\
4y + 2x + 2z &= 0
\end{align*}
\]

Isolate 3x in first equation:
Multiplicative Inverse exists, Solve for x

x = 4y + 2z

\[
\begin{align*}
(\text{mod } 8) \\
2y + 4z + 2 &= 0 \\
4y + 6z &= 0
\end{align*}
\]
Algorithm for Solving Linear Bit-vector Equations

(mod 8)
\[2y + 4z + 2 = 0 \]
\[4y + 6z = 0 \]

All Coeffs Even
No Inverse

(mod 4)
\[y[1:0] + 2z[1:0] + 1 = 0 \]
\[2y[1:0] + 3z[1:0] = 0 \]

Key Idea: Solve for bits of variables

Divide by 2
Algorithm for Solving Linear Bit-vector Equations

\begin{align*}
(y[1:0] + 2z[1:0] + 1) \mod 4 &= 0 \\
2y[1:0] + 3z[1:0] &= 0
\end{align*}

Solve for $y[1:0]$

\begin{align*}
y[1:0] &= 2z[1:0] + 3 \\
3z[1:0] + 2 &= 0
\end{align*}

Substitute $y[1:0]$
Algorithm for Solving Linear Bit-vector Equations

\[(\text{mod 4})\]
\[3z[1:0] + 2 = 0\]

Solve for \(z[1:0]\)

Solution (mod8, 3 bits)
\[x = 4(y' @ 3) + 2(z' @ 2)\]
\[y = y' @ 3\]
\[y[1:0] = 3\]
\[z = z' @ 2\]
\[z[1:0] = 2\]

\[(\text{mod 4})\]
\[z[1:0] = 2\]
Experimental Results: Solver for Linear Equations

<table>
<thead>
<tr>
<th>Testcase</th>
<th>Result</th>
<th>Solver On (sec)</th>
<th>Solver Off (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test15 (0.9M)</td>
<td>Sat</td>
<td>66</td>
<td>MO</td>
</tr>
<tr>
<td>Test16 (0.9M)</td>
<td>Sat</td>
<td>67</td>
<td>MO</td>
</tr>
<tr>
<td>Thumb1 (2.7M)</td>
<td>Sat</td>
<td>840</td>
<td>MO</td>
</tr>
<tr>
<td>Thumb2 (3.2M)</td>
<td>Sat</td>
<td>115</td>
<td>MO</td>
</tr>
<tr>
<td>Thumb3 (4.3M)</td>
<td>Sat</td>
<td>1920</td>
<td>MO</td>
</tr>
</tbody>
</table>

3.2 GHz Pentium, 512 Kb cache, 32 bit machine, MO @ 3.2 GB, TO @ 35 minutes

Examples courtesy David Molnar (Berkeley)
1. **Design and Architecture of STP**

2. **Abstraction-Refinement based heuristics for Deciding Arrays**

3. **Solver Algorithm for deciding Linear Bit-vector Arithmetic O(n^3)**

4. **Experimental Results**
STP v. Existing Tools
(Hardest Examples: SMT Comp, 2007)

<table>
<thead>
<tr>
<th>Testcase (# of Unique Nodes)</th>
<th>Result</th>
<th>STP (sec)</th>
<th>Z3 (sec)</th>
<th>Yices (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>610dd9c (15k)</td>
<td>Sat</td>
<td>37</td>
<td>TO</td>
<td>MO</td>
</tr>
<tr>
<td>Grep65 (60k)</td>
<td>UnSat</td>
<td>4</td>
<td>0.3</td>
<td>TO</td>
</tr>
<tr>
<td>Grep84 (69k)</td>
<td>Sat</td>
<td>18</td>
<td>176</td>
<td>TO</td>
</tr>
<tr>
<td>Grep106 (69k)</td>
<td>Sat</td>
<td>227</td>
<td>130</td>
<td>TO</td>
</tr>
<tr>
<td>Blaster4 (262k)</td>
<td>UnSat</td>
<td>10</td>
<td>MO</td>
<td>MO</td>
</tr>
<tr>
<td>Testcase20 (1.2M)</td>
<td>Sat</td>
<td>56</td>
<td>MO</td>
<td>MO</td>
</tr>
<tr>
<td>Testcase21 (1.2M)</td>
<td>Sat</td>
<td>43</td>
<td>MO</td>
<td>MO</td>
</tr>
</tbody>
</table>

3.2 GHz Pentium, 512 Kb cache, 32 bit machine, MO @ 3.2 GB, TO @ 35 minutes

Examples courtesy Dawn Song (CMU) and David Molnar (Berkeley)
Lessons Learnt

- Abstraction Refinement will remain important for DPs for many applications
- Reduction to Boolean SAT
- Identify polynomial pieces and nail them
- Successful DPs highly application driven
Future Work

- Make STP more efficient for
 - Disjunctions
 - Non-linear Arithmetic (\(*\), \(/\), \%)
- Quantifiers
- Boolean SAT tuning for structured input
- More theories
 - Uninterpreted Functions, Datatypes, Reals, Integers, …
Other Projects at Stanford

- Software
 - CVC
 - Decision Procedure for Mixed Real and Integer Linear Arithmetic
 - CVC Lite
 - Decision Procedure for Bit-vectors
 - Collaborated on EXE
 - STP, Capturing C semantics in STP

- Theory
 - Lifted Ghilardi’s Combination Result to Many-Sorted Logic
Acknowledgements

- Prof. David L. Dill, Stanford CS Department (Ph.D. Advisor)
- STP users and Stanford community
- Prof. Martin Rinard (Host)
- Lincoln Labs and Tim Leek (Support)
QUESTIONS

http://people.csail.mit.edu/vganesh/stp.html